North Coast MPA Baseline Monitoring: Rocky Intertidal
North Coast MPA Baseline Monitoring Symposium
5 May 2017

Sean Craig (HSU)
*Joe Tyburczy (California Sea Grant/HSU)
Rosa Laucci (Tolowa Dee-ni’ Nation)
Andrew Kinziger (HSU)
Pete Raimondi (UC Santa Cruz)
Ivano Aiello (Moss Landing)
This chart does not replace the legal description found in Title 14, California Code of Regulations.
Project components

- Focal species
 - sea stars (and wasting syndrome)
 - mussel beds
 - abalone (*Haliotis* spp.)
 - sea palm (*Postelsia palmaeformis*)
 - surf grass (*Phyllospadix* spp.)

- Fish diversity surveys

- Algae & invertebrate biodiversity surveys

- High-resolution topographic surveys
Project components

• Focal species
 – sea stars (and wasting syndrome)
 – mussel beds
 – abalone (*Haliotis* spp.)
 – sea palm (*Postelsia palmaeformis*)
 – surf grass (*Phyllospadix* spp.)

• Fish diversity surveys

• Algae & invertebrate biodiversity surveys

• High-resolution topographic surveys
Methods: *Pisaster ochraceus*

- MARINe (Multi-Agency Rocky Intertidal Network)
- Permanently-marked irregular plots in mid/low zone
- Roughly 15–30m²
- 3 plots per site
- Data:
 - Counts by arm length (1cm bins) and wasting category
 (0 = healthy/no wasting, 4 = disintegrating)
Methods: mussel bed

• MARINe (Multi-Agency Rocky Intertidal Network)
• Permanently-marked photo quadrats in mussel bed (mid zone)
• 50cm × 75cm = 0.375m²
• 5 quadrats per site
• Data:
 – Percent cover (100 contact points/quad)
 – Mussel bed depth (5/quad = 25/site)
 – Individual mussel length (10/quad = 50/site)
Abalobadia (10 Mi. SMR)

MacKerricher SMCA

[Bar charts showing disease class and ray length for ABD and MAC from summer and winter of different years.]
Pisaster trends by site

Healthy ≥ 60mm

<table>
<thead>
<tr>
<th>Site</th>
<th>Sum 14</th>
<th>Win 14/15</th>
<th>Sum 15</th>
<th>Win 15/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYR</td>
<td>210</td>
<td>200</td>
<td>190</td>
<td>180</td>
</tr>
<tr>
<td>PSG</td>
<td>170</td>
<td>160</td>
<td>150</td>
<td>140</td>
</tr>
<tr>
<td>PAP</td>
<td>130</td>
<td>120</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>ABD</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>MAC</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>FTB</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>BLN</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Juveniles < 60mm

<table>
<thead>
<tr>
<th>Site</th>
<th>Sum 14</th>
<th>Win 14/15</th>
<th>Sum 15</th>
<th>Win 15/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYR</td>
<td>210</td>
<td>200</td>
<td>190</td>
<td>180</td>
</tr>
<tr>
<td>PSG</td>
<td>170</td>
<td>160</td>
<td>150</td>
<td>140</td>
</tr>
<tr>
<td>PAP</td>
<td>130</td>
<td>120</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>ABD</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>MAC</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>FTB</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>BLN</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Pisaster trends by site (wasting)

![Graph showing Wasting symptom prevalence]

- Fraction symptomatic
- Wasting symptom prevalence
- Sum 14, Win 14/15, Sum 15, Win 15/16

Legend:
- PYR
- PSG
- PAP
- ABD
- MAC
- FTB
- BLN
Mussels

![Graphs showing percent cover, bed depth, and mean length of mussels over different periods.]

- Percent cover (% Cover)
- Bed depth (mm)
- Mean length (mm)

Periods: Sum 14, Win 14/15, Sum 15, Win 15/16
Lines represent different species:
- PYR
- PSG
- PAP
- ABD
- MAC
- FTB
- BLN
Observed patterns

- Many more *Pisaster* at northern sites in summer 2014.
- **Major declines in abundance of large *Pisaster***.
- Wasting syndrome prevalence has decreased.
- **Pulse of juvenile *Pisaster* at two sites, especially in the north.**
- Little trend in mussel abundance; no obvious response to decrease in sea stars.
Recognize these?
Recognize these?
Large abalone – in the *intertidal* ?!!
Abalone sizes
Abalone accessibility
Abalone size & accessibility

![Bar chart showing size class and accessibility comparison between 2014 and 2015. Bars represent accessible (white) and not accessible (gray) abalone in different size classes.]
Sampling timeline

- Summer Sampling
- Winter Sampling
- Winter Sampling
- Summer Sampling

2014
2015
2016
Collecting intertidal fish

Tidepool + Water pump + People = Fish!
Diversity results

• High diversity overall: 34 species, 8 families
 – Sculpins (Cottidae) most common
 – Many juveniles of recreational fished species
• Marine protected area sites (MPA’s) have similar diversity, but lower species richness
• And lower abundance at MPA sites
• High intertidal zone had lower species richness but similar abundance (vs. mid and low zone pools)
Richness by zone

Species

Unprotected
Protected

High
Mid
Low
Rockfish

• Typically *Sebastes melanops* recruit March-August

• **Previous studies found hundreds per pool**
 – Rebecca Studebaker & Tim Mulligan (2008)
 – Mark Lomeli (2009)

• **But almost none seen in this study!**
Rockfish

- Sebastes melanops
- Sebastes mystinus
- Sebastes miniatus
- Sebastes spp.

The chart shows the number of juvenile S. melanops captured at Point St. George and Palmer's Point from 2003 to 2015. The data indicates a peak in 2004 at Palmer's Point, with no captures recorded in 2014 and 2015.
Conclusions

• Lots of sculpin recruits in high intertidal zone
• Nearly all likely species were detected
• MPA sites started with lower species richness & abundance
• Why were there no black rockfish?
 – Poor recruitment years?
 – Anomalous (warm) ocean conditions during 2014, 2015?

Oligocottus rimensis

Kevin Hinterman
Acknowledgements

HSU Intertidal Crew
- Leslie Booher
- Holly Clegg
- Kevin Hinterman
- Angela Jones
- Kellan Korcheck
- Brianne Kottenbach
- Catherine Lamb
- Jason Lopiccolo
- Sioni Martin
- Allison Mitchell
- Torre Polizzi
- Johnny Roche
- Jaclyn Schneider
- Shelby Shapiro
- Sarah Wickman
- Jana Litt

HSU Colleagues
- Brian Tissot
- Tim Mulligan
- Anthony Desch

Funders & Partners
- California Ocean Protection Council
- Ocean Science Trust & MPA Monitoring Enterprise
- California Department of Wildlife
- California Sea Grant
Summary values by site

<table>
<thead>
<tr>
<th>Site</th>
<th>Species</th>
<th>Families</th>
<th>Fish/pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point St. George</td>
<td>13</td>
<td>4</td>
<td>29.9</td>
</tr>
<tr>
<td>False Klamath</td>
<td>14</td>
<td>4</td>
<td>24.7</td>
</tr>
<tr>
<td>Palmer’s Point</td>
<td>20</td>
<td>5</td>
<td>39.2</td>
</tr>
<tr>
<td>South</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ten Mile</td>
<td>16</td>
<td>5</td>
<td>8.8</td>
</tr>
<tr>
<td>MacKerricher</td>
<td>14</td>
<td>4</td>
<td>9.1</td>
</tr>
<tr>
<td>Fort Bragg</td>
<td>20</td>
<td>8</td>
<td>30.9</td>
</tr>
<tr>
<td>Belinda Point</td>
<td>22</td>
<td>8</td>
<td>15.6</td>
</tr>
<tr>
<td>Species List</td>
<td>Stichaeidae</td>
<td>Cottidae</td>
<td>Cottidae</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------------</td>
<td>--------------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Anoplarchus purpurens</td>
<td>Artedius corallinus</td>
<td>Enophrys bison</td>
</tr>
<tr>
<td></td>
<td>Cebidichthys violaceus</td>
<td>Artedius fenestralis</td>
<td>Hemilepidotus hemilepidotus</td>
</tr>
<tr>
<td></td>
<td>Phytichthys chirus</td>
<td>Artedius harringtoni</td>
<td>Hemilepidotus spinosus</td>
</tr>
<tr>
<td></td>
<td>Xiphister atropurpurae</td>
<td>Artedius lateralis</td>
<td>Oligocottus maculosus</td>
</tr>
<tr>
<td></td>
<td>Xiphister mucosus</td>
<td>Ascelichthys rhodorus</td>
<td>Oligocottus rimensis</td>
</tr>
<tr>
<td>Pholidae</td>
<td></td>
<td>Clinocottus acuticeps</td>
<td>Oligocottus rubellio</td>
</tr>
<tr>
<td></td>
<td>Apodichthys flavidus</td>
<td>Clinocottus analis</td>
<td>Oligocottus snyderi</td>
</tr>
<tr>
<td></td>
<td>Apodichthys fucorum</td>
<td>Clinocottus embryum</td>
<td>Scorpaenichthys marmoratus</td>
</tr>
<tr>
<td>Gobiesocidae</td>
<td></td>
<td>Clinocottus globiceps</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gobiesox maeandricus</td>
<td>Clinocottus recalvus</td>
<td></td>
</tr>
<tr>
<td>Clinidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gibbonsia metzi</td>
<td>Hexagrammidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gibbonsia montereyensis</td>
<td>Hexagrammos decagrammrus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hexagrammos lagocephalus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liparidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liparis florae</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species List</th>
<th>Clionidae</th>
<th>Scorpaenidae</th>
<th>Scorpaenidae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gibbonsia metzi</td>
<td>Sebastes carnatus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gibbonsia montereyensis</td>
<td>Sebastes melanops</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sebastes miniatus</td>
<td></td>
</tr>
</tbody>
</table>